ALOENIN B, A NEW DIGLUCOSYLATED 6-PHENYL-2-PYRONE FROM KENYA ALOE ${ }^{1}$

\author{

Abstract

ABSTRAC1.-A new 6-phenyl-2-pyrone 0,0 -diglucoside, aloenin B , was isolated from commercial Kenya aloe. Its structure, 6- \{ 2-0- 3 -D-[2-0-(E)-p-coumaroyl] glucopyranosyl-4-O- β-D-glucopyranosyl-6-methyl \} phenyl-2-pyrone (1), was established by spectral methods and chemical transformations.

}

As a part of systematic chemical studies on aloe, ${ }^{2}$ the water soluble constituents of a commercial sample from Kenya were investigated. In addition to aloins A and B (30%) $(2,3)$ and aloeresin $\mathrm{D}(12.5 \%)(4)$, a new 0,0 -diglucoside for which we propose the name aloenin $B^{3}(\mathbf{1})$ was isolated in 13.5% yield.

Aloenin B (1) was obtained as an amorphous powder. The molecular formula $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{17}$ and the presence of two hexose residues, one of them bearing a p-coumaroyl group, were derived by fdms: fragments at $m / z 718[\mathrm{M}]^{+}, 572\left[\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}\right]^{+}, 556$ M-C $\left.\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]^{+}, 410\left[\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}-\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]^{+}$, and $248\left[\mathrm{M}-\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{O}_{2}-2 \mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right]^{+}$, likely corresponding to the aglycone.

Uv and ir spectra of aloenin B revealed strong similarities with those of 4-methoxy-2-pyrones (6) and of aloenin A (2) (formerly aloenin), previously isolated from Aloe arborescens var. natalensis Berger (5). This fact, together with the molecular weight of the aglycone, allowed structure $\mathbf{1}$ (or the isomeric one having the acylated and non-acylated glucosyl residues in inverted position) to be assigned to aloenin B . This was confirmed by spectral evidence, as shown in Tables 1 and 2 , in which ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-chemical shifts of aloenin B are listed together with those of other structurally related 6-phenyl-2pyrones. Assignments in Tables 1 and 2 are mainly based on analogies of chemical shifts and coupling constants with those found for the corresponding signals in 4-methoxy-2pyrones ($7-9$) and in aloenin A (5,10). Proton-proton coupling constants were confirmed by homonuclear decoupling, and ${ }^{13} \mathrm{C}$ assignments were supported by off-resonance and proton-coupled spectra. In addition, selective proton decoupling experiments were carried out to solve the ambiguities in the assignments of some $\mathrm{C}-13$ signals (e.g., for $\mathrm{H}-9$ vs. $\mathrm{H}-11, \mathrm{C}-9$ vs. $\mathrm{C}-1^{\prime \prime}$ in $\mathbf{1}$, etc.). Convincing evidence in favor of structure 1, in which the non-acylated glucosyl group is linked to the $10-0$-position, came from differential ${ }^{1} \mathrm{H}-\mathrm{nOe}$ experiments performed on compound 4 prepared from

[^0]

1

($\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$

$6 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=$

5

$$
7 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{H}
$$
aloenin $\mathrm{B}(1)$ via enzymatic or acid hydrolysis to 3 followed by methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Irradiation of the singlet at $\delta 3.74$ caused intensity enhancement of both the singlets at $\delta 6.47(5.8 \%)$ and at $\delta 6.61(3.5 \%)$ due to aromatic protons in the 11 - and 9 - positions, respectively. This allowed the irradiated methoxy group of 4 and the nonacylated glucosyl residue of $\mathbf{1}$ to be located in the 10 -position. By contrast, when the pyrone methoxy group was irradiated, only the signal of $\mathrm{H}-3$ was enhanced (3.5%). This fact, however, could be interpreted in terms of a preferred orientation of the methyl group (11) in agreement with a previous observation concerning aloenin A derivatives (12). Finally, on irradiation of the methoxy group present in the cinnamoyl residue of 4 , an $n O e$ value of ca. 3% was observed for the two equivalent ortho-protons.

The β-configuration of the two D-glucosyl moieties of $\mathbf{1}$, one of which esterified in the 2-0-position, was inferred by the coupling constant values for the anomeric protons (see Table 1) (8 Hz) as well as for the anomeric carbon atoms $\left.{ }^{1} J{ }^{13} \mathrm{CH}\left(1^{\prime}\right)\right]=$ $\left.{ }^{1} \mathrm{~J}\left[{ }^{13} \mathrm{CH}\left(1^{\prime \prime \prime}\right)\right]=160 \mathrm{~Hz}\right)(13)$.

Table 1. ${ }^{1} \mathrm{H}-\mathrm{nmr}$ Spectral Data of Aloenin B (1) and its Derivatives ${ }^{\mathbf{a}}$

Proton(s) No.	Compound					
	$1{ }^{\text {b }}$	2	$3^{\text {b }}$	$4{ }^{\text {b }}$	$5{ }^{\text {b }}$	$6{ }^{\text {b }}$
3	$5.52(\mathrm{~d}, 2.2)$	5.47 (d, 2.5)	5.47(d, 2.2)	5.49 (d, 2.2)	5.63 (d, 2.2)	5.61(d, 2.2)
5	$5.79(\mathrm{~d}, 2.2)$	6.15 (d, 2.5)	5.77 (d, 2.2)	5.82 (d, 2.2)	6.25 (d, 2.2)	6.24 (d, 2.2)
9	6.63 (d, 2.0)	$6.62(\mathrm{~d}, 2.2)^{\text {d }}$	6.43 (d, 2.0)	6.61 (d, 2.0)	6.71 (d, 1.8)	6.65 (d, 2.0)
11	6.48 (d, 2.0)	6.45 (d, 2.2) ${ }^{\text {d }}$	6.30 (d, 2.0)	6.47 (d, 2.0)	6.60 (d, 1.8)	6.56 (d, 2.0)
$4-\mathrm{OCH}_{3}$	3.69	3.86	3.68	3.67	3.85	$3.82{ }^{\text {e }}$
$10-\mathrm{OCH}_{3}$				3.74		$3.75{ }^{\text {e }}$
$12-\mathrm{CH}_{3}$	2.09	2.19	2.04	2.10	2.18	2.17
$1{ }^{\prime}$	5.06(d, 8.0)		4.99 (d, 8.0)	S.09(d, 8.0)	$4.91(\mathrm{~d}, 7.0)^{\text {e }}$	4.88(d, 7.5)
2^{\prime}	4.78 (dd, 8.0)		4.74 (dd, 8.0)	4.79 (dd, 8.0)		
$2^{\prime \prime}$	6.13 (d, 16.0)		6.13 (d, 16.0)	6.23 (d, 16.0)		
3"	7.38 (d, 16.0)		7.36 (d, 16.0)	7.40 (d, 16.0)		
$5^{\prime \prime}, 9^{\prime \prime}$	7.44 (d, 8.5)		7.43 (d, 8.5)	7.55 (d, 8.5)		
$6^{\prime \prime}$, $8^{\prime \prime}$	6.74 (d, 8.5)		6.73 (d, 8.5)	6.90 (d, 8.5)		
$7{ }^{\prime \prime}$ - $\mathrm{O}^{\prime} \mathrm{OCH}_{3}$				3.77		
1	4.87 (d, 8.0)				4.90 (d, 7.5$)^{\text {e }}$	

${ }^{a}$ Multiplicities (d, doublet; dd, doublet of doublets) and coupling constants (Hz) are given in parentheses. Other signals are singlets.
${ }^{\text {b }}$ Recorded at 300 MHz in DMSO- d_{6} after $\mathrm{D}_{2} \mathrm{O}$ exchange except for $\boldsymbol{4}^{4}$. Chemical shifts are given in ppm. DMSO was used as internal standard ($\delta 2.50$ from TMS). Signals of glucosyl hydroxy groups were observed in the range $\delta 3-5$ and broad signals of phenolic groups in the range $\delta 9.5-10$ when spectra were run without addition of $\mathrm{D}_{2} \mathrm{O}$.
'Spectrum recorded in ($\left.\mathrm{CD}_{3}\right)_{2} \mathrm{CO}(5)$.
${ }^{\mathrm{d}}$ Previously reported without unequivocal assignments (5).
${ }^{\text {e }}$ Assignments may be reversed.

To verify that the p-coumaroyl group is responsible for the bathochromic shift (54 $n \mathrm{n}$) of aloenin $B(\mathbf{1})$ in alkaline solution, whereas a similar shift in aloenin $A(2)$ is due to the presence of a phenolic OH in the 10 -position (5), compound $\mathbf{1}$ was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in MeOH . However, the resulting product, showing no bathochromic shift, was found to be the deacylated aloenin B, i.e. 5, instead of the expected $7^{\prime \prime}$-O-methylated derivative of $\mathbf{1}$. This fact can be explained on the basis of a nucleophilicity enhancement of MeOH in the presence of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (14). It is worth noting that marked upfield shift appeared in the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum for $\mathrm{H}-3$ and $\mathrm{H}-5$ resonances going from 1 to 5 (Table 1). This is indicative of a strong anistropic effect produced by the cinnamoyl residue on the pyrone protons, as a consequence of the relative position of the two rings in the preferred conformation of $\mathbf{1}$ in solution.

Taking advantage of the $\mathrm{CH}_{2} \mathrm{~N}_{2}$-catalyzed trans-esterification in $\mathrm{MeOH}, 4$ was converted into 6 which was found to be identical with the $10-0$-methylaloenin $A(5)$ by a comparison of their physical properties. In addition, enzymatic β-glucosidase hydrolysis of 5 afforded aloenin A (2) and, in a longer term experiment, aglycone 7, whose structure had previously been demonstrated by X-ray analysis $(5,15)$.

Thus, structure 1 for aloenin B was unequivocally proved by the above chemical correlation.

EXPERIMENTAL

General experimental procedures.-Melting points are uncorrected. Ir and uv spectra were obtained on a Perkin-Elmer spectrometer model 681 and on a Perkin-Elmer 554 instrument, respectively. A Bruker CXP 300 spectrometer was used to record ${ }^{1} \mathrm{H}-\mathrm{nmr}(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-\mathrm{nmr}(75.47 \mathrm{MHz}$)

Table 2. ${ }^{13} \mathrm{C}$-nmr Spectral Data of Aloenin B (1) and its Derivatives

Carbon No.	Compound					
	$1^{\text {a }}$	$2^{\text {b }}$	$3^{\text {a }}$	$4^{\text {a }}$	$5^{\text {a }}$	$6^{\text {a }}$
2	163.74	165.04	163.77	163.61	163.81	163.78
3	88.09	88.52	87.88	88.02	88.00	87.91
4	170.50	171.53	170.49	170.38	170.80	170.79
5	104.03	104.99	103.92	103.96	104.23	104.20
6	$158.75^{\text {c }}$	159.50	$157.43^{\text {c }}$	$157.04^{\text {c }}$	$158.86^{\text {c }}$	$157.44^{\text {c }}$
7	115.34	114.85	113.25	114.75	115.50	114.85
8	$156.95^{\text {c }}$	158.18	$156.16^{\text {c }}$	$156.03^{\text {c }}$	$157.36^{\text {c }}$	$156.40^{\text {c }}$
9	99.89	102.06	99.86	98.85	100.71	100.80
10	155.75	161.44	$159.41^{\text {d }}$	$160.97{ }^{\text {d }}$	156.10	160.96
11	111.35	112.45	110.54	109.07	111.39	109.21
12	138.69	140.14	138.68	138.86	138.75	138.95
$4-\mathrm{OCH}_{3}$	56.06	55.83	55.93	$55.95{ }^{\text {e }}$	56.19	$56.13{ }^{\text {d }}$
$10-\mathrm{OCH}_{3}$				$55.17^{\text {e }}$		$55.15^{\text {d }}$
$12-\mathrm{CH}_{3}$	19.30	20.31	19.25	19.33	19.66	19.66
$1{ }^{\prime}$	97.98	103.06	98.43	98.42	$99.80{ }^{\text {d }}$	99.31
$2 '$	73.88	74.75	73.86	73.93	$73.08^{\text {d }}$	73.17
3^{\prime}	$72.65^{\text {d }}$	78.76°	72.74	72.77	$76.60{ }^{\text {f }}$	$76.72^{\text {e }}$
$4{ }^{\prime}$	70.08	71.16	69.70	70.05	69.75^{8}	69.78
$5 '$	$77.08{ }^{\text {e }}$	$78.57^{\text {c }}$	77.10	77.34	$76.94{ }^{\text {f }}$	$77.11^{\text {e }}$
6^{\prime}	$60.79^{\text {f }}$	62.46	60.42	60.60	60.79	60.73
$1^{\prime \prime}$	165.03		164.98	164.87		
$2^{\prime \prime}$	113.96		113.96	115.06		
3 "	144.57		144.48	144.05		
$4{ }^{\prime \prime}$	125.27		125.22	126.75		
5", 9"	130.08		130.01	129.87		
$6^{\prime \prime}, 8^{\prime \prime}$	115.68		115.64	114.23		
$7^{\prime \prime \prime}{ }^{\prime \prime} \mathrm{OCH}_{3}$	159.69		$159.60^{\text {d }}$	$\begin{array}{r} 160.93^{\mathrm{d}} \\ 55.22^{\mathrm{e}} \end{array}$		
$1^{\prime \prime \prime}$	99.48				$100.4{ }^{\text {d }}$	
$2^{\prime \prime \prime}$	$73.08{ }^{\text {d }}$				$73.16{ }^{\text {e }}$	
$3^{\prime \prime \prime}$	$76.66{ }^{\text {e }}$				$76.66^{\text {f }}$	
$4^{\prime \prime \prime}$	70.08				69.81^{g}	
$5{ }^{\prime \prime}$	$77.08{ }^{\text {e }}$				$76.94{ }^{\text {f }}$	
$6^{\prime \prime \prime}$	$60.72^{\text {f }}$				60.79	

${ }^{\text {a }}$ Registred at 75.47 MHz in $\mathrm{DMSO}-d_{6}$ at room temperature. Chemical shifts are given in ppm.
DMSO was used as internal standard ($\delta 39.50$ from TMS).
${ }^{\mathrm{b}}$ Recorded in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ (5).
${ }^{c-g}$ Signals with the same superscript are interchangeable.
spectra. Optical rotations were measured on a Perkin-Elmer model 241 polarimeter with a 10 cm microcell in MeOH solutions. Fdms were recorded on a Varian MAT 311-A mass spectrometer equipped with a combined FI/FD/EI ion source, and fabms on a VG 7070EQ mass spectrometer. Droplet countercurrent chromatography (dccc) was carried out on a Model 670 equipped with 300 standard glass tubes (40 $\mathrm{cm} \times 2.7 \mathrm{~cm}$ i.d.). Microanalyses were obtained with a Perkin-Elmer 240 elemental analyser. Tlc was performed with silica gel $60 \mathrm{~F}_{254}$ precoated plates (Merck, 0.25 mm layer) using EtOAc-ErOH- $\mathrm{H}_{2} \mathrm{O}$ ($100: 20: 13$) as eluent, unless orherwise indicated; spots were visualized by exposing to uv light (254 nm). Commercial Merck silica gel 60 (230-400 mesh ASTM) was used for column chromatography. Analytical and semipreparative hplc was performed on a Perkin-Elmer 3B liquid chromatograph connected to a variable wavelenght uv detector (Perkin-Elmer LC 75 Spectrophotometric detector); general analytical conditions: column $250 \times 4 \mathrm{~mm}$, LiChrosorb RP-18, $10 \mu \mathrm{~m}$; flow rate: $1 \mathrm{ml} / \mathrm{min}$; detector $\lambda 280 \mathrm{~nm}$; eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, linear gradient from 30 to $60 \% \mathrm{MeOH}$ in 25 min (unless stated otherwise); semi-preparative conditions: column $250 \times 25 \mathrm{~mm}$, LiChrosorb RP-18, $7 \mu \mathrm{~m}$; flow rate: $15 \mathrm{ml} / \mathrm{min}$; detector $\lambda 340 \mathrm{~nm}$; eluent: $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, linear gradient form 30 to $60 \% \mathrm{MeOH}$ in 18 min (unless stated otherwise).

Plant material.-Commercial Kenya aloe used in this study was purchased from Saamer Int., Ltd. (Mombasa, Kenya).

Isolation of aloenin b (1).-Powdered Kenya aloe (3.0 g) was dissolved in 15 ml of the dccc solvent ($1: 1$ ratio of two phases formed from $\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 7: 13: 8$). After filtration (Millipore filter, pore size 0.5 m), both phases were subjected to dccc (ascending mode; the lower phase was used as stationary phase; flow $40 \mathrm{ml} / \mathrm{h}$). Separation was monitored by tlc and fractions containing aloenin $B(R f 0.60)$ as a major component were combined. A further purification by flash chromatography (eluent: EtOAc-EtOH$\mathrm{H}_{2} \mathrm{O}, 100: 20: 13$) afforded a yellowish compound (400 mg) which was found to be pure on tlc and analytical hplc (Rt 15 min). Mp 186-188 ${ }^{\circ}$; $[\alpha\}^{30} \mathrm{D}-24.9^{\circ}$ (c $0.22, \mathrm{MeOH}$); ir $\nu \max$ (KBr) $3400,1700,1680$, $1630,1560 \mathrm{~cm}^{-1}$; uv $\lambda \max (\mathrm{MeOH}) 205(\log \in 4.75), 224 \mathrm{sh}(4.48), 298(4.44), 308 \mathrm{~nm}(4.45) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table 1; ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 2; fabms $\mathrm{m} / \mathrm{z} 741(\mathrm{M}+\mathrm{Na})^{+}, 719(\mathrm{M}+\mathrm{H})^{+}, 411,309,249$. Calcd for $\mathrm{C}_{34} \mathrm{H}_{38} \mathrm{O}_{17} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 54.76 ; \mathrm{H}, 5.54 \%$. Found: $\mathrm{C}, 54.88 ; \mathrm{H}, 5.67 \%$.

Methanolysis of aloenin b (1) to 3.-Aloenin B(1) (50 mg) was heated with $3 \% \mathrm{HCl}$ in MeOH (25 ml) for 1 h . After cooling, the mixture was neutralized with solid NaHCO_{3}, filtered and evaporated. The residue was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $n-\mathrm{BuOH}$. The organic layer, showing a major spot with Rf 0.80 on tlc and a major peak on hplc with Rt 18 min was evaporated in vacuo, redissolved in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and desalted by passing through a column of Amberlite XAD-7 (wet volume, 100 ml). Elution with MeOH followed by evaporation of the solvent afforded a crude product which was purified by semi-preparative hplc (Rt 15 min). After lyophilization, compound $\mathbf{3}$ was obtained as an amorphous pow$\operatorname{der}(25 \mathrm{mg})$.
$\mathrm{Mp} 148-150^{\circ}[\alpha]^{25} \mathrm{D}-17.7^{\circ}(c 0.21, \mathrm{MeOH})$; ir $v_{\max }(\mathrm{KBr}) 3400,1695,1690,1635,1605,1555$ cm^{-1}, uv $\lambda_{\max }(\mathrm{MeOH}) 205(\log \epsilon), 224 \mathrm{sh}(4.33), 298(4.39), 308(4.40) ;{ }^{1} \mathrm{H}$ nmr see Table $1 ;{ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 2; fabms $m / z 579(\mathrm{M}+\mathrm{Na})^{+}$, $557(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{12} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 57.63$; $\mathrm{H}, 5.35 \%$ Found: $\mathrm{C}, 57.48 ; \mathrm{H}, 5.51 \%$. The identification of glucose, which was present in the aqueous mother liquor, was carried out by glc analysis after evaporation and silylation (16).

Enzymatic hydrolysis of aloenin b (1) to 3.- β-Glucosidase (almond emulsin, Sigma) was added to a solution of aloenin $\mathrm{B}(1)(200 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{ml})$, and the mixture incubated at 39° for 2 days. After adding MeOH , the solution was filtered and concentrated under reduced pressure. Semi-preparative hplc of the aqueous residue gave a product which was found to be identical in all respects with compound $\mathbf{3}$ obtained as described above.

Methylation of 3 to 4.-A slow stream of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ prepared from Diazald (Aldrich, 1.6 g), (17) (N_{2} as carrier) was bubbled for 2 h into a solution of $\mathbf{3}(100 \mathrm{mg})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ at 25°. Evaporation of the solvent left a residue showing a single spot (Rf 0.4) in tlc ($\mathrm{EtOAc}-\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{MeOH}, 80: 20: 5$). Purification by semi-preparative hplc (eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, linear gradient from 60 to $90 \% \mathrm{MeOH}$ in 20 min , Rt 11.5 min), gave pure $4(59 \mathrm{mg}) . \mathrm{Mp} 128-131^{\circ} ;[\alpha]^{25} \mathrm{D}-11.4^{\circ}(c 0.21, \mathrm{MeOH})$; uv $\lambda \max (\mathrm{MeOH}) 205(\log \epsilon$ 4.60), $224 \mathrm{sh}(4.43), 308 \mathrm{~nm}(4.45) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table $1 ;{ }^{13} \mathrm{C} \mathrm{nmr} \mathrm{see} \mathrm{Table} \mathrm{2;} \mathrm{fabms} \mathrm{m} / \mathrm{z} 607(\mathrm{M}+\mathrm{Na})^{+}$, $585(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{12} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 60.70 ; \mathrm{H}, 5.60$. Found: $\mathrm{C}, 60.92 ; \mathrm{H}, 5.67 \%$.

Preparation of 5.-A solution of aloenin B(1) (100 mg) in $\mathrm{MeOH}(25 \mathrm{ml})$ was treated with a large excess of gaseous $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (N_{2} as carrier) (17). The disappearance of 1 was monitored by tlc and hplc. After 4 h the reaction mixture was evaporated to dryness in vacuo and the residue, showing two peaks in hplc (Rt 6.0 and 23.0 min), was separated by semi-preparative hplc. Lyophilization of the eluate containing the more polar compound (Rt 6.0 min) gave pure 5 (45% yield). $\mathrm{Mp} 136-138^{\circ} ;[\alpha]^{25} \mathrm{D}-53.1^{\circ}(60.2$, MeOH); ir $\nu_{\max }(\mathrm{KBr}) 3400,1690,1645,1610,1560 \mathrm{~cm}^{-1}$; uv $\lambda \max (\mathrm{MeOH}) 205(\log \in 4.55), 224$ (4.16), $232 \mathrm{sh}(4.10), 297 \mathrm{~nm}(4.00) ;{ }^{1} \mathrm{H} \mathrm{nmr}$ see Table 1; ${ }^{13} \mathrm{C}$ nmr see Table 2; fabms $\mathrm{m} / \mathrm{z} 595(\mathrm{M}+\mathrm{Na})^{+}$, $573(\mathrm{M}+\mathrm{H})^{+}$. Calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{5} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.08 ; \mathrm{H}, 5.88 \%$. Found: $\mathrm{C}, 50.24 ; \mathrm{H}, 5.53 \%$.

The less polar compound (Rt 23.0 min) was also isolated by semi-preparative hplc and shown to be pure methyl p-methoxycinnamate by comparison (tlc, hplc, glc, ${ }^{1} \mathrm{H} n \mathrm{nmr}$) with an authentic sample.

Treatment of 4 with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ TO Obtain 6. - A solution of $\mathbf{4}(40 \mathrm{mg})$ in MeOH (10 ml) was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ as described for the preparation of 5 . After evaporation of reaction mixture in vacuo, compound 6 was isolated by semi-preparative hplc (eluent $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; linear gradient from 60 to 75% MeOH in 15 min , Rt 12 min) and crystallized from $\mathrm{ErOAc} / \mathrm{Et}_{2} \mathrm{O}$. Its physical properties (mp , ir, ${ }^{1} \mathrm{H} \mathrm{nmr}$, elemental analysis) were found to be identical with those reported for the same compound derived from aloenin A (2) (5). ${ }^{13} \mathrm{C} \mathrm{nmr}$, see Table 2.

EnZYMATIC HYDROLYSIS OF 5.-By treatment of $5(90 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ with β-glucosidase (72 h at 39°) followed by semi-preparative hplc, compound $\mathbf{2}$ was obtained in pure form ($42 \mathrm{mg}, \mathrm{Rf} 0.47, \mathrm{Rt}$ 12 min in analytical hplc). Its physical properties (mp, [$\alpha] \mathrm{D}, \mathrm{ir}, \mathrm{uv},{ }^{1} \mathrm{H} \mathrm{nmr},{ }^{13} \mathrm{C}$ nmr, elemental analysis) were shown to be identical with those reported for aloenin A (5).

When compound 5 was incubated with β-glucosidase for 5 days a less polar ($\operatorname{Rf} 0.86, \operatorname{Rt} 15.4 \mathrm{~min}$) compound was obtained along with 2. Extraction of the reaction mixture with $\mathrm{Et}_{2} \mathrm{O}$ followed by evaporation in vacuo gave a product (60% yield) whose physical properties ($\mathrm{mp}, \mathrm{ir},{ }^{1} \mathrm{H}$ nmr, elemental analysis) were in close agreement with those reported for the aloenin A aglycone (7) (5).

ACKNOWLEDGMENTS

We gratefully acknowledge Miss A. Martignoni, Centro Studi Maria Branca, Milan, for technical assistance; Drs. E. Arlandini and B. Gioia, Farmitalia Carlo Erba, Milan, for fd mass spectra; Prof. B. Danieli, Dipartimento di Chimica Organica e Industriale, University of Milan, for fab mass spectra; and the Ministero Pubblica Istruzione of Italy for financial support.

LITERATURE CITED

1. G.E. Trease and W.C. Evans, "Pharmacognosy," Baillière Tindall, London, 1983, pp. 404 ff.
2. J.E. Hay and L.J. Haynes, J. Cbem. Soc., 3141 (1956).
3. E. Graf and M. Alexa, Arch. Pharm., 313, 285 (1980).
4. G. Speranza, G. Dadà, L. Lunazzi, P. Gramatica, and P. Manitto, Phytochemistry, in press.
5. T. Hirata and T. Suga, Bull. Cbem. Soc. Jpn., 51, 842 (1978).
6. A.K. Ganguly, T.R. Govindachari, and P.A. Mohamed, Tetrabedron, 21, 93 (1965).
7. W.H. Pirkle and M. Dines, J. Heterocycl. Chem., 6, 1 (1969).
8. W.V. Turner and W.H. Pirkle, J. Org. Chem., 39, 1935 (1974).
9. A.A. Chalmers and K.G.R. Pachler, Can. J. Chem., 53, 1980 (1975).
10. K. Tori, T. Hirata, O. Koshitani, and T. Suga, Tetrabedron Lett., 1311 (1976).
11. L.I. Kruse and J.K. Cha, J. Chem. Soc., Chem. Commun., 1329 (1982).
12. T. Suga, T. Hirata, and K. Tori, Chem. Lett., 715 (1974).
13. K. Bock and C. Pedersen, J. Cbem. Soc. Perkin Trans II, 293 (1974).
14. J.C. Young, Can. J. Chem., 53, 2530 (1975).
15. T. Hirata, Y. Kushi, T. Suga, and A. Christensen, Cbem. Lett., 393 (1976).
16. G. Speranza, P. Gramatica, G. Dadà, and P. Manitto, Pbytochemistry, 24, 1571 (1985).
17. M.A. Walker, D.R. Roberts, and E.B. Dumbroff, J. Cbromatogr., 241, 390 (1982).

Received 16 January 1986.

[^0]: ${ }^{1}$ Part 4 in the series "Studies on Aloe." For Part 3, see G. Speranza et al. (4).
 ${ }^{2}$ Aloe is the solid residue obtained by evaporating the liquid which drains from cut leaves of Aloe spp. (Liliaceae). The drug is mainly prepared from Aloe ferox Mill., its hybrids (Cape and Kenya aloe), and Aloe vera L. (Curaçao aloe) (1).
 ${ }^{3}$ This name is suggested by structural similarities between 1 and aloenin (2) (5), which is called aloenin A in the present paper.

